
AD-A251 457
IME H i II iii1 lH H i

FINAL REPORT

Graphics-Based Parallel Programming Tools D T IC
Janice E. Cuny, Principal Investigator f ELECTE

Department of Computer and Information Science MAY 1 3 1992 II
University of Massachusetts. Amherst MA EM

Net Address: cunvucs.umass.edu S
Iq 4 Z,,

ONR Contract Number: N00014-89-J-1492

RESEARCH DESCRIPTION

1. Overview
Highly parallel architectures will be useful in meeting the demands of

computationally intensive tasks only to the extent that it is possible to write
efficient parallel software. The problems are enormous. The parallel pro-
grammer must simultaneously code for multiple processes. orchestrating their
communication and synchronization: he must efficiently map logical processes
onto disparate hardware configurations and schedule their execution. Fur-
ther, he must debug - both for correctness and performance - in spite of a
potentially overwhelming amount of relevant information and in the absence
of reproducibility or consistent global states. If it is not possible to provide
sophisticated programming support for these activities. it is unlikely that
highly parallel computation will be generally available to either the scientific
or the commercial communities.

In our research, we' have investigated aspects of parallel computation
that are specific to massive parallelism. During most of the funding pe-
riod. we focused on computations designed for MIMD. message-passing ar-
chitectures, considering support for fine-grained parallelism in which large
numbers of processes communicate frequently across regular interconnection
structures. For these computations. we developed techniques for program

'I would like to acknowledge the contributions of the students who have worked on this
project. Graduate students include Duane Bailey, Alfred Hough, Joydip Kundu, Bruce
Leban. Kumar Varadaraiu, and Qing Yu: undergraduates include Jim Ahrens. and Craig
Loomis.

Thiiu docii-nent has been approved
fcr public release and sale; its
distribution is unlimited.

specification and visualization. More recently, we expanded our focus to in-
clude fine-grained SIMD computations and we developed optimizations for
array convolutions.

2. Parallel Program Specification
The abstractions provided by a programming environment determine a

programmer's effectiveness in implementing and debugging algorithms, yet
few abstractions exist for massive parallelism. We began by considering
the role of graph representations. Graphs provide a natural wav of think-
ing about parallelism. Their explicit use can reduce the disparity between
a programmer's conceptualization of his algorithm and its implementation.
increase the homogeneity of process code and provide a basis for coherent
graphical displays.

Existing programming environments, however, did not support the ex-
plicit use of graphs. Ideally, such support should provide for scalability,
user-specific annotations, graph manipulations, and visualization. The most
difficult of these is scalability but it is crucial since programmers typically
implement and debug their programs in-the-small and then scale them for
massive parallelism and even production programs may require rescaling to
reflect problem size constraints or hardware availability. No existing tools
provided this range of facilities.

We based our tool on a form of graph grammars - Aggregate Rewriting
(AR) Graph Grammars [1,2,31 - that we had previously developed. AR gram-
mars are particularly suited to descriptions of communication structures -
structures that are connected and sparse with low degree. near symmetry,
and low radius. They provide a flexible mechanism for the concise, graph-
ical specification of entire graph families. Graph grammar formalisms are,
however, quite foreign to most programmers.

As a result. we developed a grammar-based editor - called ParaGraph 2

- that provides a "friendly" user interface [4]. 'sing ParaGraph. the pro-
grammer begins by specifying the smallest member of his graph family. He
then describes the set of transformations needed to convert that graph into
the next larger family member and he develops a script to direct the order of iJ

Li
2 Though the prefix "'para" might suggest parallel (either because we use a parallel

graph rewriting mechanism or because we apply our results to parallel programming), we
interpret it to mean "beyond" (as in *'paranormai"). cmphasizing the fact that the editor
supports the specification of not just single graphs. but entire graph families.

Statement A per telecon ,, .. ,
Dr. Gary Koob ONR/Code 1133 Dist C; ,i
Arlington, VA 22217-5000

NWW 5/12/92 L

their application. The initial graph becomes the start graph of an underlying
graph grammar. the transformations become its productions. and the script
determines allowable derivation sequences. ParaGraph provides an interface

to the basic AR mechanisms and it extends them in a number of ways -
adding restricting predicates, edge inheritance, and graph composition - to
make a more convenient tool for the programmer.

......... X2 -

A04.4

1
i T e' ,

Figure 1: Butterfly grammar and the results of the first iteration of the script (B1
through B3).

Figure i shows the sample definition of the family of butterfly graphs.
The four node start graph (StartButterfly) is annotated by a single. user-
defined attribute giving its rank. There are three transformations. The

first (BI) begins a new rank of the butterfly by adding a row of nodes con-
nected along the top level. We use dark. solid shading for the nodes be-
ing replaced and lighter shading for the nodes of the replacing graph. The
application of this production is shown in StartButterfly: :B1: it applies
only to nodes in the top level because labels of matched graph instances
must have rank-o. The second transformation (B2) makes a connected
copy of the original host graph by rewriting nodes on the bottom two ranks
(StartButterfly: :Bl: : B2): here variations in shading indicate a partition-
ing of the edge inheritance function. The application oi this production is

-3

limited to the lower ranks of the butterfly by a restricting predicate (not
shown). Restricting predicates are most often specified by example: the user
selects a subset of nodes from a sample graph and heuristics are used to
convert his selection into a generalized, closed form expression [5]. The third
transformation (B3) makes a connected copy of the nodes in the top rank
to complete the butterfly (BUTTERFLY- 1). The appropriate script for this
grammar is

StartButterfly: (B1 B2 B3)n.

BUTTERFLY^ 2 and BUTTERFLY- 4. then. would be the 32 and 192
node butterflies respectively. The layout of the butterfly as shown was gen-
erated automatically. We provide both generation-time and post-generation
lavout heuristics.

Our motivation for the graph editor was to provide support for the ex-
plicit representation of graphs for use within a parallel programming environ-
ment. In our environment, we view a parallel program as an annotated graph
[6]. Annotations might, for example, include code segments. run-time pa-
rameters. port associations. and compiler-time constants. Using ParaGraph,
the programmer specifies a family of annotated graphs and then a specific
instance of that family is generated and preprocessed into a form suitable
for compilation. Currently we produce C code and channel declarations for
execution on a multiprocessor simulator but extensions to other target ar-
chitectures are straightforward. ParaGraph's output - in the form of both
annotated graphs and underlying graph grammars - is accessible to all of
our tools supporting program development.

The use of ParaGraph still requires an understanding of graph grammar
mechanisms. Programmers are comfortable with the concept of "growing" a
large graph from a small graph. but they often find the subtleties of graph
embedding mechanisms quite confusing. AR embedding mechanisms are par-
ticularly difficult because inheritance is determined by a partitioning of node
and edge relations. Thus. we have begun design of a simplified interface for
ParaGraph that removes these concerns from the programmer s domain [7].
It is based on the more familiar graph drawing operations of copy (which
duplicates a subgraph) and replace (which replaces single nodes). The pro-
grammer uses these operations to draw a prototypical node replacement and
the editor infers an underlying AR production. The simplification sacrifices
some generality - for example. all inferred productions have single node

4

left-hand sides and uniform partitioning - but we have found that even so-
phisticated users seldom employ the full generality of AR grammars when
defining graphs typical of parallel computation.

The editor was originally envisioned as a specification tool. Now that
it has been integrated into our environment. however, we see it in a more
central role. serving as a common graphical interface to other tools (debug-
gers. animators. mappers. etc.). Large graphs were not a problem during
specification because the programmer only worked with small graphs which
were automatically scaled just prior to compilation. Other support tools.
however, will need access to the generated program graphs which may have
thousands or even tens of thousands of nodes. Such graphs are prohibitively
expensive to construct and extremely difficult to visualize. Thus. we also
began to investigate the use of compact representations ot graph derivations
to provide efficient techniques for interrogating and visualizing large graphs
without explicit construction i8]. Specifically, we are investigating derivation-
based layout (layout and placement decisions are made locally as productions
are applied), partial visualizations (abstractions of the graph structure are
used without explicit rendering of all nodes), and lazy generation (limited
construction of specified regions of the graph).

3. Parallel Program Animation
It is extremely difficult to understand the behavior of massively parallel

s vstems: thev have an overwhelming amount of potentially relevant infor-
mation and often they do not have consistent global states or reproducible
behavior. Visualization has been widely used as an aid. but standard visu-
alization techniques do not address the fundamental problems of complexity
and concurrency in parallel computations. Our approach combines event-
based behavioral abstraction with animation: the programmer describes the
intended behavior of his program with a high-level model that is then used to
guide the animation of its actual behavior. We demonstrated this approach
previously with the prototype of a pattern-oriented parallel debugger. cal'ei
Belvedere [9,101. Using Belvedere. we identified a fundamental problem i~i the
visualization of abstract events: animations of concurrent. nonatomic events
are often obscured because constituent subevents overlap in both time and
space. This can be seen in Figure 2a where a snapshot of the animation of a
simulated annealing of the traveling salesman problem reveal, an incoherent
jumble of communication events.

(a) Snapshot of low level communication events.

2 3'

(b) Consecutive snapshots of evaluate. synchromze and swap events after reordering.

Figure 2: Traveling Salesman.

In order to provide comprehensible animations of these events, we devel-
oped techniques for temporally reordering event streams with the goai of pro-
ducing visually distinct animations of concurrent events [Ill. In many cases.
these reorderings - called perspective views - are accomplished without
violating any program dependencies and thus result in equivalent. logically
coherent animations. For the traveling salesman problem. we see in Figure 2b
that the animation has been separated into three logically meaningful "ab-
stract" steps: an evaluate step in which processes communicate across one of
the cube dimensions to determine the value of proposed swaps: a synchronize
step in which a token is passed around an embedded ring to insure that only
nonconflicting swaps are accepted: and a swap step in which accepted swaps
are made. It is possible to automatically separate these abstract events be-
cause there are no conflicting dependencies: all processes see the three steps
in the same order and all interprocess communication happens within a step.

6

Not all abstract behaviors have this property.
Consider. for example. a program that issues queries to a database stored

on a hypercube. The host issues queries which are routed through the cube
to the appropriate node and then back again to the host. The user under-
stands this svstem in terms of abstract queries that group all of the traffic in
response to a single host query together. If we look at an animation of such
queries as in Figure 3a we see that there may be several active queries at a
time. Abstract queries are concurrent but. because they are not necessarily
seen in the same order at each process. their dependencies can not be consis-
tently separated. For such systems. we enable the user to construct partially
consistent reorderings that preserve subsets of program dependencies. These
partial perspective views provide only a limited view of the svstem behavior
but they are easily constructed and they can be used in combinations to
achieve a more comprehensive view. In dictionary search example we can
separate the queries based on the order in which the host issues them Lo get
the pictures in Figure 3b.

We have implemented partial perspectives within our debugger and found
them to be quite useful in exposing bugs that had previously avoided detec-
tion. The techniques themselves are quite general. They can be applied
to a number of other visualization tools as we demonstrated for the cases
of process-time graphs and user-directed animations [11]. We have begun
to evaluate them in a more general context by implementing perspective
views within the Voyeur system [121. Voyeur is a more conventional tool for
displaying application-specific visualizations of parallel programs [131 and it
provides a flexible experimental testbed for investigating a variety of issues
such as

Is user-defined, behavioral abstraction useful in a general ani-
mation system? Can we characterize the cases in which such
animation is useful? What support docs it require'? Can we
automatically generate visualizations of abstract events in more
conventional animators? Is the manipulation of time meaningful
in general animation systems? Is reordering only necessary in
asynchronous systems? In the presence of abstraction? Can we
provide visual cues to dependency violations?

We have only very preliminary results from this work but we expect that

,HI
4

a) Concurrent queries (no reordering).

H 5 41

0 '1,
W- I

177 61-

2 2
H b Abtatqeyeetsrodrdwt-arilprpcie

FigueH 3: Ditoa1 erh

0S

further investigation will clarify the role of behavioral abstraction and time
manipulations in understanding complex behaviors.

4. Other Work: A Convolution Optimizer for SIMD Programs
Communication overhead can easily offset performance increases due to

massive parallelism. The overhead is particularly significant for fine-grained.
SIMD architectures since relatively little computation is performed between
successive communications and all processes are delayed while communica-
tion completes. We have developed code optimizations for SUMD architec-
tures that reduce communication costs for array convolutions, an important
class of array manipulations f14].

Our work began as an adaptation of algebraic optimization techniques
developed by Fisher and Highnam [151. In adapting their heuristics for the
Connection Machine. we attempted to address their reliance on a directional
algebra that applied only to grids. They assumed the machine architecture
was a grid of dimension less than or equal to that of the input array which
menat that thev are unable to fully exploit the interconnectivitv of an archi-
tecture such as the Connection Machine. Our heuristics use graph theoretic
techniques and they are more general: they eliminate restrictions on the
architecture and permit input structures with other topologies.

References

1 Duane A. Bailey and Janice E. Cuny, --Graph Grammar Based Specifi-
cation of Interconnection Structures for Massively Parallel Computa-
tion." Proceedings Third International Workshop on Graph Grammars.
Lecture ,Votes on Computer Science. pp. 73-85 (1987).

2 Duane A. Bailey and Janice E. Cuny. "An Approach to Programming
Process Interconnection Structures: Aggregate Rewriting Graph Gram-
mars." Parallel Architectures and Languages Europe. Lecture Votes in
Computer Science 259. J.V. de Bakker. A.J. Nijman and P.C. Tre-
leaven (eds.), Springer-Verlag, pp.112-123 (June 19S7).

3 Duane A. Bailey, Specifying Communication for Masszvely Parallel En-
semble Machines. Ph.D. Thesis. COINS Department. University of
Massachusetts (1988).

4 Duane A. Bailey, Janice E. Cuny, and Craig P. Loomis. "'ParaGraph:
Graph Editor Support for Parallel Programming Environments." In-
ternational Journal of Parallel Programming 19(2). pp. 75-110 (April
1990).

5 Qing Yu and Janice E. Cuny, "Support for Subgraph Identification in a
Parallel Programming Environment." Proceedings of the First Annual
IEEE Symposium on Distributed and Parallel Processing, Dallas. TX.
pp. 196-197 (May 1989).

6 Duane A. Bailey and Janice E. Cunv, "Visual Extensions to Parallel Pro-
gramming Languages" in Languages and Compilers for Parallel Com-
puting. David Gelernter. Alexandru Nicolau. and David Padua teds.).
The MIT Press. Cambridge Massachusetts. Chapter 2. pp. 17-36 (1990).

7 Charles D. Fisher. "Approaches to Specifying Aggregate Rewriting Graph
Grammar Productions," M.S. Thesis. COINS Department. University
of Massachusetts (1990).

8 Duane A. Bailey. Janice E. Cuny, and Charles D. Fisher. "Programming
with Very Large Graphs." Accepted for publication. Fourth Interna-
tional Workshop on Graph Grammars and their Applications to Com-
puter Science.

9 Alfred A. Hlough and Janice E. Cuny, "Belvedere: Prototype of a Pattern-
Oriented Debugger for Highly Parallel Computation." Proceedings of
the 1987 International Conference on Parallel Processing. pp. 735-738
(1987).

10 Alfred A. Hough and Janice E. Cuny. "Initial Experiences with a Pattern-
Oriented Debugger." Proceedings of the A C,1I SIGPL A N/SIGOPS Work-
shop on Parallel and Distributed Debugging. pp. 195-205 (May 1988).
Also appeared SIGPLAN Notices 24(1), pp. 195-205 (January 1989).

11 Alfred A. Hough and Janice E. Cunv, "Perspective Views: A Technique
for Enchancing Visualizations of Parallel Programs." Proceedings of the
1990 International Conference on Parallel Processing, pp. 11 124-132
(August 1990). Long version COINS Technical Report 90-02.

10

12 Nandakumar Varadaraju. Interfacing Belvedere with Voveur. Master's
Thesis. COINS Department. University of Massachusetts (June 1991).

13 David Socha and Mary L. Bailey and David Notkin. "'Voyeur: Graphi-
cal Views of Parallel Programs". SIGPLAN Workshop on Parallel and
Distributed Debugging, pp. 206-215 (1988).

14 Joydip Kundu and Janice E. Cuny, Optimizations of Array Convolutions
for SIMD Architectures. COINS Technical Report 91-65. University of
Massachusetts (September 1991).

15 Allan L. Fisher and Peter F. Highnam. -Communication and Code Op-

timization in SIMD Programs" . Proceedings of the 1989 International
Conference on Parallel Processing, pp. 84-88 (1989).

11

PUBLICATIONS/REPORTS

Alfred A. Hough, Debugging Parallel Programs Using Abstract Visualiza-
tions. PhD Thesis. CO'.rS Department. University of Massachusetts
(1991).

Joydip Kundu and Janice E. Cuny, Optimizations of Array Convolutions
for SIMD Architectures. COINS Technical Report 91-65. University of
Massachusetts (September 1991).

Nandakumar Varadaraju. Interfacing Belvedere with Voyeur. Master's The-
sis. COINS Department. University of Massachusetts (June 1991).

Duane A. Bailey, Janice E. Cuny, and Charles D. Fisher. -Programming
with Very Large Graphs." Accepted for publication. Fourth Interna-
tional Workshop on Graph Grammars and their Applications to Com-
puter Science.

Duane A. Bailey. Janice E. Cuny, and Craig P. Loomis. "'ParaGraph: Graph
Editor Support for Parallel Programming Environments." International
Journai of Parallel Programming 19(2), pp. 75-110 (April 1990).

Duane A. Bailey and Janice E. Cuny, "'Visual Extensions to Parallel Pro-
gramming Languages" in Languages and Compilers for Parallel Com-
puting. David Gelernter. Alexandru Nicoiau. and David Padua (eds.).
The MIT Press. Cambridge Massachusetts. Chapter 2. pp. 17-36 (1990).

Alfred A. Hough and Janice E. Cuny, "-Perspective Views: A Technique for
Enchancing Visualizations of Parallel Programs." Proceedings of the
1990 International Conference on Parallel Processing, pp. 11 124-132
(August 1990). Long version COINS Technical Report 90-02.

Nandakumar Varadaraju. The ParaGraph Tutorial. COINS Technical Re-
port 90-51 (June 1990).

David K. Black. ParaGraph: The User's Manual. COINS Technical Report
90-35 (May 1990).

12

Alfred A. Hough and Janice E. Cuny, Perspective Views: A Technique
for Enchancing Visualizations of Parallel Programs (Long Version).
COINS Technical Report 90-02 (1990).

Charles D. Fisher. -'Approaches to Specifying Aggregate Rewriting Graph
Grammar Productions." M.S. Thesis. COINS Department. Universitv
of Massachusetts (1990).

Qing Yu and Janice E. Cuny, 'Support for Subgraph Identification in a
Parallel Programming Environment." Proceedings of the First Annual
IEEE Symposium on Distributed and Parallel Processing, Dallas. TX.
pp. 196-197 (May 1989).

Mark Gisi, Janice E. Cuny and Duane A. Bailey. --Canister Communication
as a Vehicle for Parallel Debugging," Proceedings of the First Annual
IEEE Symposium on Distributed and Parallel Processing, Dallas. TX.
pp. 198-199 (May 1989).

Duane A. Bailey and Janice E. Cuny, "'Cannister Communication in Parallel
Programs.' COINS Technical Report 88-42 (October 1988).

HONORS

Janice E. Cuny, IEEE Distinguished Visitor. 1990-1992

Janice E. Cuny. NSF Faculty Award for Women 1991

13

